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Abstract Posttranslational modifications (PTMs) regulate myriad cellular pro-
cesses by modulating protein function and protein-protein interaction. Heat shock
protein 90 (Hsp90) is an ATP-dependent molecular chaperone whose activity is
responsible for the stabilization and maturation of more than 300 client proteins.
Hsp90 is a substrate for numerous PTMs, which have diverse effects on Hsp90
function. Interestingly, many Hsp90 clients are enzymes that catalyze PTM, dem-
onstrating one of the several modes of regulation of Hsp90 activity. Approximately
25 co-chaperone regulatory proteins of Hsp90 impact structural rearrangements,
ATP hydrolysis, and client interaction, representing a second layer of influence on
Hsp90 activity. A growing body of literature has also established that PTM of these
co-chaperones fine-tune their activity toward Hsp90; however, many of the identi-
fied PTMs remain uncharacterized. Given the critical role of Hsp90 in supporting
signaling in cancer, clinical evaluation of Hsp90 inhibitors is an area of great
interest. Interestingly, differential PTM and co-chaperone interaction have been
shown to impact Hsp90 binding to its inhibitors. Therefore, understanding these
layers of Hsp90 regulation will provide a more complete understanding of the
chaperone code, facilitating the development of new biomarkers and combination
therapies.
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Introduction

Heat shock protein 90 (Hsp90) is a ubiquitous and essential molecular chaperone.
Approximately 300 client proteins depend on the 90-kDa chaperone for proper
folding, stability, and activation (Schopf et al. 2017). Hsp90 clients include protein
kinases, transcription factors, oncoproteins, and tumor suppressors (https://www.
picard.ch/downloads/Hsp90interactors.pdf). Through a highly dynamic process
known as the chaperone cycle, Hsp90 ATP hydrolysis is coupled to large confor-
mational changes and consequent client chaperoning (Panaretou et al. 1998;
Obermann et al. 1998; Schopf et al. 2017). This chaperone cycle is tightly regulated
by a class of regulators known as co-chaperones. These proteins bind to distinct
conformations of Hsp90 and regulate its progression through the chaperone cycle,
client loading and release, and posttranslational modification (PTM) (Cox and
Johnson 2018; Sahasrabudhe et al. 2017; Zierer et al. 2016; Rohl et al. 2013;
Hohrman et al. 2021).

Cancer cells often rely on the Hsp90 chaperone machinery to support
dysregulated proliferation and metastasis, making Hsp90 an attractive therapeutic
target (Neckers and Workman 2012; Barrott and Haystead 2013; Rodina et al. 2016;
Wang et al. 2016). Due to the breadth of the Hsp90 clientome, Hsp90 inhibitors can
simultaneously disrupt numerous oncogenic pathways, making Hsp90 inhibitor
development an area of intense focus. Despite promising preclinical results, Hsp90
inhibitors have yet to be approved for the treatment of human cancers. Notably,
Hsp90 PTMs and co-chaperone dynamics modulate cellular sensitivity to Hsp90
inhibitors, suggesting that a comprehensive understanding of Hsp90 regulation is
paramount to the clinical success of Hsp90 inhibitors (Walton-Diaz et al. 2013;
Woodford et al. 2016a; Backe et al. 2020; Cloutier and Coulombe 2013).

The Chaperone Cycle

The Hsp90 chaperone cycle comprises an ordered series of conformational changes
coupled to its ATPase activity (Graf et al. 2009; Mickler et al. 2009). Hsp90 consists
of three structural domains (Ali et al. 2006; Verba et al. 2016). The amino-terminal
domain (NTD) contains the nucleotide-binding pocket (Prodromou et al. 1997a, b),
which is connected to the middle domain (MD) by a highly charged, flexible linker
region (Tsutsumi et al. 2012; Hainzl et al. 2009; Jahn et al. 2014). Many Hsp90-
interacting proteins bind to the Hsp90-MD, which also contains the catalytic loop
that is required for ATP hydrolysis (Meyer et al. 2003; Biebl and Buchner 2019;
Schopf et al. 2017). The carboxyl-terminal domain (CTD) contains the highly
conserved, extreme C-terminal MEEVD sequence which is the docking site for
tetratricopeptide repeat (TPR) domain-containing co-chaperones (Young et al.
1998; Carrello et al. 1999; Russell et al. 1999; Ramsey et al. 2000). Notably, the
functional unit of Hsp90 is a dimer, and the CTD is the site of constitutive
dimerization of the Hsp90 protomers (Harris et al. 2004; Prodromou and Pearl
2003; Wayne and Bolon 2007).
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Apo-Hsp90 that is dimerized at the CTD adopts an open V-shaped conformation.
Upon ATP binding to the nucleotide pocket of the NTD, Hsp90 undergoes large
conformational rearrangements resulting in transient dimerization of the Hsp90
NTDs to form the “closed” conformation. Subsequent ATP hydrolysis causes a
return to the open V shape, resetting the chaperone for the next cycle (Zierer et al.
2016; Mickler et al. 2009; Prodromou and Pearl 2003; Hessling et al. 2009; Neckers
et al. 2009; Shiau et al. 2006). Interestingly, ATP binding in the NTD leads to
conformational changes throughout the length of the entire protein (Cunningham
et al. 2008). This ability has also been attributed to several PTMs of Hsp90,
demonstrating the complex interdomain connectivity and communication through-
out the Hsp90 protein (Rehn et al. 2020; Stetz et al. 2018; Xu et al. 2019).

To meet the differing needs of ~300 client proteins, the Hsp90 chaperone cycle is
regulated by co-chaperones and PTMs. These regulators provide directionality to the
cycle by altering conformational dwell time, coordinating assembly of chaperone-
client complexes, and modulating Hsp90 affinity for ATP and ATP hydrolysis rate.
The general progression of the cycle is well established and is outlined below and in
Fig. 11.1.
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Fig. 11.1 The Hsp90 chaperone cycle. Open Hsp90 is dimerized only through contacts in the CTD.
ATP binding and an ordered series of conformational changes allow Hsp90 to adopt a closed
conformation, which is N-terminally dimerized. ATP hydrolysis leads Hsp90 to return to the open
conformation and is ready to begin another chaperone cycle. This cycle allows for the activation of
client proteins. Throughout the cycle, co-chaperones bind to Hsp90 and regulate its function. PTM
of Hsp90 and PTM of co-chaperones provide further regulation of the chaperone cycle
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An early event in the Hsp90 chaperone cycle is binding of the co-chaperone
Hsp70-Hsp90-organizing protein (HOP) to the open conformation of Hsp90 via its
TPR2A domain. HOP slows Hsp90 ATPase activity and helps transfer client pro-
teins from the “early”” chaperone Hsp70 to Hsp90 (Wegele et al. 2006; Li et al. 2011;
Prodromou et al. 1999). HOP is then displaced by the co-chaperone activator of
Hsp90 ATPase (Ahal) (Harst et al. 2005), which aids Hsp90 N-domain dimeriza-
tion, thereby increasing the rate of ATP hydrolysis (Panaretou et al. 2002; Meyer
et al. 2004; Retzlaff et al. 2010; Mercier et al. 2019). The co-chaperone cell division
cycle 37 (Cdc37) assists in loading of protein kinase clients to Hsp90 (Keramisanou
et al. 2016; Siligardi et al. 2002). Cdc37 co-chaperone function requires systematic
phosphorylation and subsequent dephosphorylation by another Hsp90 co-chaperone
protein phosphatase 5 (PP5) (Miyata and Nishida 2005; Vaughan et al. 2008;
Bandhakavi et al. 2003). Late in the client maturation process, the co-chaperone
prostaglandin E synthase 3 (p23) slows ATP hydrolysis by binding to and stabilizing
Hsp90 in the closed conformation (Ali et al. 2006; Richter et al. 2004). Many of the
co-chaperone/Hsp90 complex dynamics are heavily regulated by PTM. Regulation
of co-chaperones’ functions by PTM and the subsequent impact on Hsp90 function
and downstream cellular processes will be discussed in detail below (Table 11.1).

Canonical Co-chaperones

Hsp70/Hsp90-Organizing Protein (HOP)

The co-chaperone HOP (stress-inducible protein 1, STI1, STIP1) catalyzes client
protein transfer from ADP-bound Hsp70 to ADP-bound Hsp90 by binding each
chaperone with a unique TPR domain (Chen and Smith 1998; Johnson et al. 1998;
Odunuga et al. 2004; Brinker et al. 2002; Carrigan et al. 2004). Interestingly, HOP
binds to Hsp90 with greater affinity than other TPR-containing co-chaperones
(Hildenbrand et al. 2011). A high-affinity Hsp90/HOP complex may explain the
observation that Hsp90 binding to HOP is mutually exclusive from some other
co-chaperones including Ahal and CHIP (Harst et al. 2005; Kundrat and Regan
2010a; Xu et al. 2019). Recent work has also demonstrated a critical role for HOP in
assembly of the 26S proteasome, via its activity as an Hsp90 co-chaperone
(Bhattacharya et al. 2020).

PTMs have been previously shown to regulate the formation of the Hsp70-HOP-
Hsp90 chaperone heterocomplex, a critical initiation event in the Hsp90 chaperone
cycle. HOP was shown to be phosphorylated by both Cdc2 (Cdk1) and casein kinase
2 (CK2), affecting HOP chaperone interactions and subcellular localization. Phos-
phorylation of HOP-T198 by Cdk1 resulted in cytoplasmic localization, whereas
CK2 phosphorylation of HOP at S189 induced translocation to the nucleus
(Fig. 11.2a) (Longshaw et al. 2004; Daniel et al. 2008). Interestingly, CK2 phos-
phorylation of the Hsp90 C-terminus (T725 and S726) enhanced binding to HOP
and prevented the binding of CHIP (Muller et al. 2012), while the phosphomimetic
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Table 11.1 Co-chaperone posttranslational modifications. Identified modification sites of
co-chaperones are listed. When known, the modifying enzyme and impact on Hsp90 binding are
shown. Increased binding to Hsp90 are identified by , decreased |, and no change nc; no entry is
provided in the table if not determined or examined

Co- Hsp90

chaperone | Modification Residue | Enzyme |binding | References

HOP Phosphorylation | S16 nc Rohl et al. (2015)

HOP Phosphorylation | S189 CK2 nc Rohl et al. (2015), Longshaw

et al. (2004)
HOP Phosphorylation | T198 Cdk1 1 Longshaw et al. (2004), Daniel
et al. (2008), Rohl et al. (2015)

HOP Phosphorylation Y354 nc Rohl et al. (2015)

HOP Phosphorylation | S481 nc Rohl et al. (2015)

Cdc37 Phosphorylation | Y4 Yes l Xu et al. (2012).

Cdc37 Phosphorylation S13 CK2, T, 1 Shao et al. (2003b),

PP5 Bandhakavi et al. (2003),

Miyata and Nishida (2005,
2007, 2008), Verba et al.
(2016), Vaughan et al. (2008),
Oberoi et al. (2016)

Cdc37 Phosphorylation | S97 PKA T Pan et al. (2018)

Cdc37 Phosphorylation | Y298 Yes l Xu et al. (2012), Bachman
et al. (2018)

Cdc37 Phosphorylation | S339 Ulk1 nc Li et al. (2017)

PP5 Ubiquitination K185 VHL Dushukyan et al. (2017)

PP5 Ubiquitination K199 VHL Dushukyan et al. (2017)

PP5 Phosphorylation | T362 CK18 nc Dushukyan et al. (2017)

Ahal Phosphorylation Y223 c-Abl 1 Dunn et al. (2015), Woodford

et al. (2017)
p23 Phosphorylation | S113 CK2 T Kobayashi et al. (2004),
Nakanishi et al. (2007)

p23 Phosphorylation | S118 CK2 T Kobayashi et al. (2004)

FKBP51 Acetylation K28 Yu et al. (2017)

FKBP51 Acetylation K155 Yu et al. (2017)

FKBP51 SUMOylation K422 PIAS4 |7 Antunica-Noguerol et al.

(2016)
FKBP52 | Phosphorylation | T143 CK2 l Miyata et al. (1997), Cox et al.
(2007)

SGTA Phosphorylation | S305 Akt2 Moritz et al. (2010)

Sgtl Phosphorylation | S249 CK2 T Prus et al. (2011)

Sgtl Phosphorylation | S299 CK2 ) Prus et al. (2011)

Sgtl Phosphorylation | S331 PIk1 nc Bansal et al. (2009), Liu et al.

(2012a, b)

CHIP Phosphorylation S20 Cdk5, Kim et al. (2016), Kim et al.
protein (2018), Ranek et al. (2020)
kinase
G

(continued)
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Co- Hsp90

chaperone | Modification Residue | Enzyme |binding | References

FNIP1 Oxidation C580 Manford et al. (2020)

FNIP1 Oxidation C582 Manford et al. (2020)

FNIP1 Oxidation C585 Manford et al. (2020)

FNIP1 Phosphorylation, | S938 CK2, T, 1 Sager et al. (2019)

O-GlcNAcylation PP5,

OGT

FNIP1 Phosphorylation | S939 CK2, T, 1 Sager et al. (2019)
PP5

FNIP1 Phosphorylation S941 CK2, T, 1 Sager et al. (2019)
PP5

FNIP1 Phosphorylation | S946 CK2, 1,1 Sager et al. (2019)
PP5

FNIP1 Phosphorylation | S948 CK2, T, 1 Sager et al. (2019)
PP5

FNIP1 Ubiquitination K1119 Sager et al. (2019)

Tscl Phosphorylation | T310 Cdk1 Astrinidis et al. (2003, 2006)

Tscl Phosphorylation | S332 Cdk1 Astrinidis et al. (2003)

Tscl Phosphorylation | T417 Inoue et al. (2010)

Tscl Phosphorylation | S467 PIk1 Li et al. (2018b)

Tscl Phosphorylation | S487 IKKp Lee et al. (2007)

Tscl Phosphorylation | S511 IKKp Lee et al. (2007)

Tscl Phosphorylation | T578 PIk1 Li et al. (2018b)

Tscl Phosphorylation | T1047 | Cdkl Astrinidis et al. (2003)

TIMP-2 Phosphorylation | Y90 c-Src Sanchez-Pozo et al. (2018)

HOP-T198E decreased HOP binding to Hsp90 (Daniel et al. 2008). HOP phosphor-
ylation at residues S16, S189, Y354, and S481 was shown to regulate its interaction
with Hsp70, but not Hsp90 (Daniel et al. 2008; Rohl et al. 2015). Interestingly,
phosphorylation of HOP-S16, Y354, and S481 was also shown to reduce Hsp90-
dependent GR activity (Rohl et al. 2015); however, the kinases regulating these
phosphorylation events have yet to be reported (Fig. 11.2b). Hsp90a-T36 is also
subject to phosphorylation by CK2, though its impact on HOP interaction has not
been explored. Taken together, these data position CK2 as a master regulator of
Hsp70-HOP-Hsp90 interactions (Lees-Miller and Anderson 1989; Mollapour et al.

2011a, b).

Cell Division Cycle 37 (Cdc37)

The kinase-specific co-chaperone Cdc37 facilitates recruitment and loading of
kinase clients to the Hsp90 chaperone machinery (Siligardi et al. 2002; Roe et al.
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Fig. 11.2 PTM sites of Hsp90 co-chaperones. Surface structure of co-chaperones with confirmed
sites of PTM highlighted in red. (a) HOP rich in aspartate and proline domain-1 (DP1), PDB ID,
211v; (b) HOP-tetratricopeptide repeat domain-2 (TPR2), PBB ID, 3uq3; (c) Ahal, PDB ID, 1x53;
(d) Cdc37 amino-terminal domain (NTD), PDB ID, 5fwp; (e) Cdc37-carboxy terminal domain
(CTD), PDB ID, 2n5x; (f) PP5, PDB ID, Shpe; (g) FKBP51, PDB ID, 5njx; (h) TIMP-2, PDB
ID, 4ilw
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2004; Verba et al. 2016). Cdc37 binds to the open conformation of the Hsp90 dimer
which impedes Hsp90 conformational rearrangement, allowing time for client load-
ing to the Hsp90 chaperone complex (Eckl et al. 2013; Vaughan et al. 2006; Shao
et al. 2003a). Phosphorylation of the Cdc37-S13 by CK2 is required for Cdc37
co-chaperone activity (Fig. 11.2c) (Shao et al. 2003b; Bandhakavi et al. 2003);
specifically, S13 phosphorylation is required for client recruitment and Hsp90
binding (Miyata and Nishida 2005, 2007, 2008). Mechanistically, S13 phosphory-
lation causes Cdc37 to adopt a more compact conformation with enhanced second-
ary structure. This is necessary for Cdc37 recognition of the unfolded kinase clients
prior to binding Hsp90. Additionally, phosphorylation of Cdc37-S13 forms a salt
bridge with Hsp90-K406, contributing to Cdc37-Hsp90 interaction (Verba et al.
2016). Subsequent dephosphorylation of S13 by protein phosphatase 5 (PP5) is
required for client release from the chaperone complex, resetting Hsp90 to begin
another chaperone cycle (Vaughan et al. 2008; Oberoi et al. 2016).

Cdc37 is also phosphorylated by protein kinase A (PKA) and the non-receptor
tyrosine kinase Yes (Xu et al. 2012). Yes phosphorylates Cdc37-Y4 and
Cdc37-Y298. Phosphorylation of Cdc37-Y298, and to a lesser extent Y4, causes
dissociation of Cdc37 from the Hsp90/client complex (Fig. 11.2¢, d) (Xu et al.
2012). Prior to dissociation, Cdc37-Y298 phosphorylation induces partial unfolding
of the Cdc37-CTD (Bachman et al. 2018). Partial unfolding of Cdc37-CTD unmasks
the polypeptide region of Hsp90 containing Y197, which is subsequently phosphor-
ylated by Yes causing Cdc37 to dissociate from the complex and allow for progres-
sion through the chaperone cycle. PKA-mediated phosphorylation of Cdc37-S97
was subsequently found to be important for Cdc37/Hsp90 interaction and chaperon-
ing of the kinase AXL. Interestingly, nonsteroidal anti-inflammatory drugs
(NSAIDs) inhibited Cdc37-S97 phosphorylation leading to incomplete folding and
eventual degradation of AXL by the co-chaperone CHIP (Fig. 11.2c) (Pan et al.
2018).

Posttranslational modification of Hsp90 also alters Hsp90/Cdc37 complex for-
mation and chaperone function. Protein kinase A (PKA) phosphorylates Hsp90-T90
which perturbs the interaction between Cdc37 and Hsp90, leading to degradation of
the kinase clients Src, Akt, and PKCy (Wang et al. 2012). Interestingly, the Hsp90
client PKCy phosphorylates three residues of Hsp90 and causes profound impacts on
the chaperone cycle (Lu et al. 2014). Mutation of one of these residues, Hsp90-T115,
to the phosphomimetic T115E, decreased interaction between Hsp90 and Cdc37.
Further, Hsp90-T115E, Hsp90-T425E, and Hsp90-T603E all showed decreased
binding to ATP and decreased ATPase activity. The authors propose a model
where Hsp90:Cdc37 binds to newly synthesized and inactive PKCy and progresses
through the chaperone cycle leading to activation of mature PKCy. Active PKCy
then phosphorylates Hsp90 triggering the release of the client from the chaperone
complex. Notably, Hsp90-T115 was also shown to be phosphorylated by the mitotic
checkpoint kinase, Mps1, which negatively impacts Cdc37 binding (Woodford et al.
2016c), and previous work has shown Cdc37 interaction with Mps1 is important for
spindle pole body duplication (Schutz et al. 1997). Although the consequence of
Hsp90-pT115 on Cdc37 function remains unknown, these works demonstrate the



11 Impact of Co-chaperones and Posttranslational Modifications Toward. . . 327

importance of phosphorylation of both Cdc37 and Hsp90 to ensure efficient client
chaperoning.

The co-chaperone activity of Cdc37 is critical to the activation of oncogenic
kinase clients such as PKCy, c-Src, and c-Abl (Gould et al. 2008; Dey et al. 1996;
Keramisanou et al. 2016). Interestingly, Cdc37 expression is increased in some
tumors, suggesting a direct role for Cdc37 in tumorigenesis (Stepanova et al.
2000; Zhu et al. 2018; McDowell et al. 2009). In contrast, Hsp90-Cdc37 also
plays a role in starvation-induced autophagy through stabilization and activation of
Unc-51 like autophagy-activating kinase (Ulk1l) (Joo et al. 2011). Ulkl was shown
to phosphorylate Atg13 in an Hsp90-Cdc37-dependent manner, which led to Atgl3
activation and release from the Hsp90-Cdc37-Ulkl complex (Joo et al. 2011).
Interestingly, Li et al. showed that phosphorylation of Cdc37 by Ulkl enhances
sensitivity of several colon cancer cell lines to Hsp90 inhibitors. Presumably after its
activation by Hsp90-Cdc37, Ulkl phosphorylates Cdc37-S339 leading to Hsp90
kinase client degradation (Fig. 11.2d). Ulkl knockout (KO) DLDI and HCT116
cells treated with an Hsp90 inhibitor (17-AAG or AUY922) were less sensitive to
Hsp90 inhibition compared to Ulkl WT cells (Li et al. 2017). Their finding supports
a model by which Ulkl phosphorylation of Cdc37 plays a role in proteasomal
degradation of Hsp90 clients upon Hsp90 inhibition.

Protein Phosphatase 5 (PP5)

Protein phosphatase 5 (PP5) is a unique serine/threonine phosphatase and a member
of the phosphoprotein phosphatase (PPP) family, which has recently been reviewed
in great detail (Sager et al. 2020). PP5 regulates the chaperoning of numerous
kinases and steroid hormone receptors and has been shown to work with the
co-chaperones FNIP1 (Sager et al. 2019), FKBP51/52 (Gallo et al. 2007; Banerjee
et al. 2008; Hamilton et al. 2018) and most notably Cdc37 (Vaughan et al. 2008;
Oberoi et al. 2016; Prodromou 2017). Interaction of the amino-terminal TPR domain
of PP5 with its C-terminal oJ helix locks PP5 in an auto-inhibited state, and
association of the TPR domain with the Hsp90-MEEVD releases the auto-inhibition,
enabling PP5 activation (Russell et al. 1999; Connarn et al. 2014; Haslbeck et al.
2015).

PP5-mediated dephosphorylation of Cdc37-S13 is a well-established mechanism
to regulate the chaperoning of Hsp90 kinase clients (Vaughan et al. 2008). Mecha-
nistically, it was shown that PP5 only dephosphorylates Cdc37 when both
co-chaperones are bound to the same Hsp90 dimer (Vaughan et al. 2008). Interest-
ingly, recent work has shown that an activating phosphorylation of PP5 allows for
Hsp90-independent Cdc37 dephosphorylation (Dushukyan et al. 2017). Casein
kinase 18 (CK108) phosphorylates PP5-T362 in the absence of Hsp90, promoting
its phosphatase activity and subsequent dephosphorylation of its substrates Cdc37
and GR (Oberoi et al. 2016; Dushukyan et al. 2017). Modulating PP5 activity also
impacts Hsp90-binding affinity to its inhibitor ganetespib, likely via Cdc37
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dephosphorylation, as expression of nonphosphorylatable Cdc37-S13A
hypersensitized cells to the Hsp90 inhibitor geldanamycin (GA) (Oberoi et al.
2016; Vaughan et al. 2008). These works demonstrate a critical role for understand-
ing the context-dependent modification of Hsp90 co-chaperones.

PP5 exhibits elevated expression in tumor cells and has an important role in
tumorigenesis (Golden et al. 2008; Wang et al. 2015, 2018; Sager et al. 2020).
Specifically, PP5 is overexpressed and hyperphosphorylated on T362 in clear cell
renal cell carcinoma cells lacking the tumor suppressor ubiquitin ligase VHL
(Dushukyan et al. 2017). Mechanistically, VHL ubiquitinates PP5-K185 and
K199, leading to PP5 degradation and inactivation (Fig. 11.2e) (Dushukyan et al.
2017). Silencing PP5 using siRNA induces apoptosis, suggesting a pro-survival role
for PP5 in cancer (Dushukyan et al. 2017). Accordingly, downregulation of PP5 has
been also shown to facilitate apoptosis via GO/G1 phase cell cycle arrest (Wang et al.
2015; Zhi et al. 2015). PP5 depletion has the added effect of inducing Hsp90
hyperphosphorylation, which negatively regulates its chaperone function and the
processing of client proteins (Wandinger et al. 2006). Taken together, these studies
suggest that combined inhibition of Hsp90 and PP5 may show selectivity toward
cancers addicted to Hsp90 client kinases.

Activator of Hsp90 ATPase 1 (Ahal)

Ahal is a highly conserved 39-kDa protein that accelerates Hsp90 ATP hydrolysis
by facilitating Hsp90 dimer N-terminal domain closure (Richter et al. 2008; Li et al.
2013; Retzlaff et al. 2010). Two-step binding of one Ahal molecule to sites on both
protomers of the Hsp90 dimer is sufficient to maximally stimulate Hsp90 ATPase
activity (Retzlaff et al. 2010; Panaretou et al. 2002). Ahal binding to Hsp90 impacts
Hsp90-NTD and Hsp90-MD conformation, priming the catalytic Hsp90-R380
(yeast) for interaction with ATP, ultimately impacting client dwell time (Koulov
et al. 2010; Meyer et al. 2003). Ahal is the only co-chaperone known to accelerate
Hsp90 ATPase activity in higher eukaryotes. Recently, Ids2 was identified as a
co-chaperone for the yeast Hsp90 ortholog, Hsc82, which stimulates Hsc82 ATPase
activity. Coordinated phosphorylation and dephosphorylation of 1ds2-S148 by PKA
and PP2C, respectively, was found to be imperative for Ids2 co-chaperone function
(Chen et al. 2018). Notably, Ids2 does not have a known ortholog in higher
eukaryotes.

Ahal is recruited to Hsp90 by SUMOylation of Hsp90a-K191 on a single Hsp90
protomer (Mollapour et al. 2014). In addition to SUMOylation, phosphorylation,
methylation, and acetylation of residues in Hsp90-NTD and Hsp90-MD have been
shown to modulate the impact of Ahal on Hsp90 activity (Mollapour et al. 2010,
2011b; Scroggins et al. 2007; Soroka et al. 2012; Xu et al. 2012, 2019; Rehn et al.
2020). These Hsp90 modifications have recently been reviewed in greater detail
(Backe et al. 2020).
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The tyrosine kinase c-Abl phosphorylates Ahal-Y223 promoting Ahal associa-
tion with Hsp90 and precedes Ahal ubiquitination (Fig. 11.2f) (Dunn et al. 2015).
The nonphosphorylatable Ahal-Y223F mutant did not stimulate the ATPase activity
of Hsp90 nor form complexes with Hsp90, co-chaperones, or clients (Dunn et al.
2015). Notably, c-Abl-mediated phosphorylation of Ahal displaces the
co-chaperone Tscl from Hsp90 (Woodford et al. 2017). Mass spectrometric analysis
revealed that phosphomimetic Ahal-Y223E preferentially interacted with proteins
involved in metabolism, ribosomal components, and transcription and translation.
Further, pharmacologic or genetic c-Abl ablation, and subsequent hypo-
phosphorylation of Ahal-Y223, sensitized prostate cancer and renal cancer cells to
Hsp90 inhibition (Dunn et al. 2015).

Ahal expression is elevated in some cancers (Holmes et al. 2008). Moreover,
knockdown of Ahal increased cellular sensitivity to 17-AAG suggesting Ahal
levels could play a role in cellular response to Hsp90 inhibitors. Abrogating the
function of the Ahal-Hsp90 complex might be beneficial in the context of the
depletion of client proteins and kinase clients that are involved in tumor cell
proliferation and survival. Several studies have examined the relationship between
Ahal expression and function and the efficacy of Hsp90 inhibitors. Ahal
overexpression in L. donovani increased radicicol (RD)-mediated inhibition of
Hsp90, but not by geldanamycin (GA) (Bartsch et al. 2017). Conversely, Ahal
knockdown was shown to sensitize human colon cancer cells to the Hsp90 inhibitor
17-AAG (Holmes et al. 2008). The c-Abl inhibitor GNF-5, treatment of which led to
hypo-phosphorylation of Ahal-Y223, hypersensitized tumors to Hsp90 inhibitors
and caused increased apoptosis in prostate cancer and renal cancer cells (Dunn et al.
2015). Interestingly, the flavonoid TL-2-8 promotes breast cancer cell death, imma-
ture mitophagy, and downregulation of Hsp90 client proteins by disrupting the
Ahal-Hsp90 complex (Liu et al. 2017). Ahal has also been implicated in the
increased production of pathogenic tau aggregates in Alzheimer’s disease (AD).
The Ahal inhibitor KU-177 reduced the in vitro accumulation of toxic tau oligomers
that correlated with (AD) progression (Shelton et al. 2017). These studies establish
the importance of understanding the function and regulation of Ahal, as it shows
promise as a therapeutic target in cancer and neurodegenerative disease.

Prostaglandin E Synthase 3 (p23)

There is a well-established role for the co-chaperone p23 in the maturation of Hsp90-
dependent steroid hormone receptors (SHRs) such as glucocorticoid receptor (GR),
estrogen receptor (ER), and progesterone receptor (PR) (Johnson and Toft 1995;
McLaughlin et al. 2006; Graf et al. 2014; Xiao and Liu 2020). Upon ATP binding
and Hsp90 N-terminal dimerization, p23 binds and stabilizes the closed, ATP-bound
chaperone complex, providing the necessary dwell time for SHR maturation (Richter
et al. 2004; Ali et al. 2006; McLaughlin et al. 2006; Martinez-Yamout et al. 2006;
Woo et al. 2009; Blacklock and Verkhivker 2013; Cano et al. 2015; Borges et al.
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2016; Gano and Simon 2010). Other co-chaperones including Ahal and the p23-like
Aarsd1L. compete with p23 for binding to Hsp90 (Harst et al. 2005; Martinez-
Yamout et al. 2006; Echeverria et al. 2016), while Hsp70/Hsp90-organizing protein
(HOP) prevents the conversion of the ADP-Hsp90 to a state that can bind p23
(Johnson et al. 1998). Notably, recent work by Buchner’s lab has provided evidence
for Hsp90-independent chaperone functions of p23 (Biebl et al. 2021). The authors
showed that a helical region in the unstructured tail of p23 is involved in direct
interactions with the GR ligand-binding domain (LBD), which may stabilize the
GR-LBD even in the absence of Hsp90. This is consistent with previous studies
related to Hsp90-independent chaperone functions of p23 (Echtenkamp et al. 2011,
2016).

While posttranslational modification of Hsp90 regulates co-chaperone interaction
(Backe et al. 2020), modification of the co-chaperones themselves provides an
additional layer of regulation of the Hsp90 chaperone machinery. CK2-mediated
phosphorylation of p23-S113 and p23-S118 is essential for p23 activation and
association with Hsp90 (Kobayashi et al. 2004; Nakanishi et al. 2007). Interestingly,
CK2 also phosphorylates the co-chaperones HOP (Lassle et al. 1997; Longshaw
et al. 2000), Sgtl (Bansal et al. 2009), Cdc37 (Shao et al. 2003b; Bandhakavi et al.
2003), FKBP52 (Miyata et al. 1997), and FNIP1 (Sager et al. 2019), as well as
Hsp90 itself (Mollapour et al. 2011b, Lees-Miller and Anderson 1989), again
highlighting the importance of CK2 activity to Hsp90 regulation (Miyata 2009).

Upregulation of p23 contributes to the progression of several cancers including
prostate, breast, and lung as well as acute lymphoblastic leukemia (Mollerup et al.
2003; Oxelmark et al. 2006; Elmore et al. 2008; Reebye et al. 2012; Liu et al. 2012a;
Cano et al. 2015). As p23 interaction with Hsp90 is nucleotide-dependent,
ATP-competitive inhibitors such as geldanamycin (GA), macbecin, and radicicol
(RD) could interfere with complex formation (Johnson and Toft 1995; Rehn and
Buchner 2015). Concordantly, depletion of p23 hypersensitizes cells to Hsp90
inhibitors GA and RD (Forafonov et al. 2008; Bartsch et al. 2017). Interestingly,
cancer cells treated with the C-terminal Hsp90 inhibitor gedunin induced caspase-
dependent cleavage of p23 and cell death by apoptosis (Patwardhan et al. 2013).

Previous work has shown that treatment with the Hsp90 inhibitor 17-AAG shifts
the binding of HDACG6 from Hsp90 to Hsp70, suppressing HDAC6 activity and
promoting Hsp90 hyperacetylation (Kovacs et al. 2005). Hyperacetylation of Hsp90
decreases its affinity for ATP and subsequent p23 binding, resulting in the depletion
of several Hsp90 client proteins (Kovacs et al. 2005, Scroggins et al. 2007, Rao et al.
2008, Yang et al. 2008). Taken together, targeting the Hsp90-p23 interaction can
influence chaperone complex formation and drug sensitivity.

Immunophilins

Immunophilins are a class of peptidyl-prolyl cis/trans isomerases (PPlase) that
include Cyp40, FKBP51, and FKBP52 and bind to Hsp90 through their TPR domain



11 Impact of Co-chaperones and Posttranslational Modifications Toward. . . 33]

(Pirkl et al. 2001). These co-chaperones can be found in Hsp90-steroid hormone
receptor (SHR) maturation complexes along with the co-chaperone p23 (Faou and
Tropschug 2003; Ratajczak et al. 2009, Zgajnar et al. 2019). Interestingly,
immunophilins differentially regulate Hsp90 ATPase activity through the formation
of distinct immunophilin-Hsp90-SHR complexes that lead to differential receptor
function (FKBP51-GR, FKBP52-PR, Cyp40-ER) (Carrello et al. 1999; Davies and
Sanchez 2005; Ratajczak et al. 2009).

Posttranslational regulation of immunophilin co-chaperones has recently been
reviewed in detail (Daneri-Becerra et al. 2019) and will be contextualized here.
FKBP51 binds to the open conformation of Hsp90 and decreases the rate of Hsp90
ATP hydrolysis (Oroz et al. 2018). Previous work has shown that FKBP51 is present
in Cdk4-Hsp90-FKBP51 heterocomplexes that inhibit cell proliferation by
preventing cyclin D1 binding and inhibiting Cdk4-T172 phosphorylation
(Ruiz-Estevez et al. 2018). Interestingly, acetylation of FKBP51 at K28 and K155
promotes activity of the Hsp90 client Akt (Yu et al. 2017), suggesting a context-
dependent role for FKBP51 in the regulation of Hsp90 client kinases. Although
FKBP51 also appears subject to serine phosphorylation by PINK-1 (Boonying et al.
2019) and PKA (Toneatto et al. 2013), the effects of modification at individual
phosphorylation sites have yet to be confirmed.

SUMOylation of FKBP51-K422 by the E3 SUMO ligase PIAS4 is essential for
Hsp90 interaction and regulation of GR signaling (Antunica-Noguerol et al. 2016).
Impairment of FKBP51 SUMOylation abolishes its interaction with both Hsp90 and
GR, leading to recruitment of FKBP52 and nuclear translocation of GR (Antunica-
Noguerol et al. 2016). Interestingly, SUMOylation of Hsp90 has been shown to
recruit Ahal, thereby inducing closure of the Hsp90 dimer (Mollapour et al. 2014)
and suggesting opposing roles for SUMOylation in the FKBP-mediated regulation
of Hsp90-dependent GR transcriptional activity.

CK2-mediated phosphorylation of FKBP52-T143 attenuates its interaction with
Hsp90 (Miyata et al. 1997), with a concomitantly impaired ability to activate GR
(Fig. 11.2g) (Cox et al. 2007). Interestingly, phosphorylation of Hsp90 by CK2 has
no impact on its interaction with FKBP52 (Miyata et al. 1997). Other works have
shown that Hsp90-K292 and Hsp90-K294 acetylation reduced its interaction with
FKBP52 (Scroggins et al. 2007; Prodromou 2016), highlighting the importance of
PTM reversibility in the regulation of Hsp90-co-chaperone interactions.

SGTA

Small glutamine-rich TPR-containing protein alpha (SGTA) is an Hsp90
co-chaperone that is critical to cellular signaling in hormone-regulated tissues
(Philp et al. 2013). Previous work has demonstrated that SGTA knockdown affects
androgen receptor (AR) maturation and prostate cancer proliferation (Buchanan
et al. 2007; Trotta et al. 2012, 2013; Paul et al. 2014). SGTA is also known to
support the growth of non-small cell lung cancer though the stabilization of the
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Hsp90 client PDGFRa (Moritz et al. 2010; Smyth et al. 2012). Phosphorylation of
SGTA-S305, potentially by Akt2, augments this effect (Moritz et al. 2010). The
impact of this modification on SGTA co-chaperone activity and Hsp90-binding
dynamics remains under investigation.

Sgtl

Another TPR-containing Hsp90 co-chaperone, the unrelated suppressor of G, allele
of SKP1 (Sgtl), is known to be regulated by phosphorylation (Gangula and Maddika
2017). Sgt1 dimerization is integral to kinetochore assembly, and this dimerization is
antagonized by CK2 phosphorylation of Sgt1-S361 in S. cerevisiae (Bansal et al.
2004, 2009). The lack of Sgtl dimerization precludes a functional Sgt1/Hsp90
complex which is necessary for kinetochore function and proper chromosome
segregation. Interestingly, subsequent work has shown that nuclear translocation
of Sgtl is dependent on its phosphorylation at the same site, potentially by CK2,
suggesting a complex regulatory role for CK2 phosphorylation of Sgtl (Prus and
Filipek 2011; Prus et al. 2011). PIk1 is a key mitotic regulatory kinase involved in
kinetochore-microtubule attachment (Sumara et al. 2004). Sgt1-S331 (S361 in yeast)
phosphorylation by Plkl promotes kinetochore-microtubule attachment (Liu et al.
2012b), emphasizing a role for differential signaling input in the regulation of Hsp90
co-chaperone function.

C-Terminus of Hsc70-Interacting Protein (CHIP)

CHIP is a TPR-containing co-chaperone that acts as an E3 ubiquitin ligase, targeting
unfolded proteins for proteasomal degradation (Edkins 2015). CHIP works in
concert with Hsp70 and Hsp90 in the ubiquitination of client substrates such as
CFTR, GR, ER, and p53 (Edkins 2015; Quintana-Gallardo et al. 2019). HOP and
CHIP compete for binding to the Hsp70 and Hsp90 chaperones, providing a
mechanism to control the balance between pro-folding and pro-degradation com-
plexes (Stankiewicz et al. 2010; Muller et al. 2012; Edkins 2015).

Both CK2-mediated phosphorylation (Muller et al. 2012) and acetylation of
Hsp90 (residues K69, K100, K294, K327, K478, K546, and K558) decrease
Hsp90 binding to CHIP, suggesting these specific modifications represent
pro-folding Hsp90 complexes (Scroggins et al. 2007; Yang et al. 2008). Indeed, it
seems that CHIP participates in a negative feedback loop where CHIP ubiquitinates
and targets HDAC6 for degradation, inducing Hsp90 hyperacetylation and attenu-
ating CHIP-Hsp90 interaction (Rao et al. 2008; Cook et al. 2012). Interestingly,
more than ten lysine residues on Hsp90 itself were identified to be targets of CHIP
ubiquitination, resulting in proteasomal degradation of Hsp90 (Kundrat and Regan
2010b; Abu-Farha et al. 2011).
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As a ubiquitin ligase, CHIP effector function is mediated by posttranslational
modification. This suggests that posttranslational cross talk has an exaggerated
impact on CHIP function and downstream targeting. In fact, CHIP-S20 phosphor-
ylation by Cdk5 contributes to neuronal cell death via disruption of the interaction
between CHIP and truncated apoptosis-inducing factor (tAIF) (Kim et al. 2016,
2018). A recent report shows that this residue can also be phosphorylated by protein
kinase G, which enhances CHIP binding to Hsc70 and protein quality control
following cardiac ischemic injury (Ranek et al. 2020).

New Co-chaperones

Folliculin-Interacting Proteins 1 and 2 (FNIP1/2)

FNIP1 and FNIP2 are large, multidomain proteins which have recently been iden-
tified as Hsp90 co-chaperones (Woodford et al. 2016b). Prior to the discovery that
FNIP1/2 are co-chaperones, their functions were thought to be exclusive to mTOR
regulation through stabilization of the tumor suppressor folliculin (FLCN) (Baba
et al. 2006; Hasumi et al. 2008). Recently, a partial structure of FNIP2 was solved in
complex with FLCN, Rag GTPase, and Ragulator complex. The structure shows that
FNIP2 has two distinct domains, a longin and a DENN domain, and has several
highly unstructured regions (Shen et al. 2019; Lawrence et al. 2019). FNIP1/2 play
critical roles in cellular function and in disease, specifically cancer, through their
association with FLCN (Hasumi et al. 2008, 2015; Baba et al. 2012). The carboxy-
terminal end of FNIP1 interacts with Hsp90-MD and Hsp90-CTD, while FNIP2
interaction is confined to Hsp90-MD (Woodford et al. 2016b). The function of
FNIP1/2 as Hsp90 co-chaperones provided an explanation for their protective role
toward the tumor suppressor folliculin (FLCN) (Woodford et al. 2016b). FNIP1/2
also contribute to the chaperoning of additional Hsp90 kinase and non-kinase clients.
The FNIPs are displaced from Hsp90 by Ahal allowing the Hsp90/client complex to
progress through the chaperone cycle (Woodford et al. 2016b).

FNIP1 co-chaperone activity is uniquely regulated by relay phosphorylation.
CK2 phosphorylates FNIP1-S938 in the C-terminal domain leading to sequential
phosphorylation of FNIP1-S939, FNIP1-S941, FNIP1-S946, and FNIP1-S948
(Sager et al. 2019). FNIP1 relay phosphorylation provides stepwise deceleration of
Hsp90 ATPase activity and client activation. FNIP1 relay phosphorylation is
reversed by the co-chaperone PP5. PP5 initially dephosphorylates FNIP1 on S948
residue which is essential for a complete dephosphorylation of all modified serine
sites in a relay fashion. Dephosphorylation disrupts FNIP1 binding to Hsp90 and
promotes O-GIcNAcylation of FNIP1-S938 (Sager et al. 2019). The addition of
GIcNAc precedes ubiquitination of FNIP1-K1119 and subsequent proteasomal
degradation (Sager et al. 2019).

FNIP1 is also ubiquitinated upon reductive stress. Under oxidative conditions,
three cysteine residues in the middle, unstructured region of FNIP1 are oxidated
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leading to FNIP1-mediated mitochondrial shutdown (Manford et al. 2020). Reduc-
tive stress reverses the oxidation of FNIP1 cysteine residues, allowing for the E3
ubiquitin ligase adaptor, FEM1B, to recognize FNIP1. FEM1B docks CUL2 onto
FNIP1. CUL2, a component of an E3 ubiquitin ligase complex, polyubiquitinates
FNIP1 leading to FNIP1 proteasomal degradation. FNIP1 degradation results in
hyperactive mitochondrial function and increased ROS production. Fine-tuned oxi-
dation of FNIP1 is therefore a key regulatory mechanism of mitochondrial function
(Manford et al. 2020).

FNIP1 and FNIP2 are upregulated in a variety of cancer cell lines including
breast, bladder, prostate, lung, colorectal, and renal cancer (Woodford et al. 2016b;
Hasumi et al. 2008). FNIP1/2 also bind more to Hsp90 in these cancer cell lines
compared to normal kidney (HEK293) cells. Further, FNIP1/2 protein levels were
found to be higher in tumor tissue compared to normal from patient samples and
upregulation of FNIP1/2 correlated with increased binding of Hsp90 to ganetespib
(GB). Taken together, regulation of FNIP1 protein levels, via ubiquitination and
degradation, in cancer is critical to sensitivity of Hsp90 to its inhibitors.

Tuberous Sclerosis Complex 1 (Tscl)

Tscl was identified as an Hsp90 co-chaperone as a result of its known role in
stabilization of its binding partner Tsc2 (Woodford et al. 2017; Benvenuto et al.
2000; Chong-Kopera et al. 2006). Notably, Tscl is also important for the stabiliza-
tion and activation of many kinase and non-kinase clients. Mechanistically, the
C-terminal portion of Tscl binds to the Hsp90-MD and decelerates Hsp90 ATPase
activity. Additionally, Tscl serves as a scaffold to load Tsc2, and potentially other
clients, onto the Hsp90 chaperone machinery. Interestingly, Tscl also decelerates
Hsp70 ATPase activity; however, the impact of this on clients has not yet been
determined (Natarajan et al. 2020). It is noteworthy that phosphorylation of Tsc1-
T417 is required for interaction with Hsp70 (Inoue et al. 2010).

The Tscl/Tsc2 complex has a well-established function inhibiting the mTOR
pathway via Rheb inhibition. The observation that Tscl is phosphorylated during
nocodazole-induced G2-M arrest led to the finding that Tscl is phosphorylated by
cyclin-dependent kinase Cdk1 at T310, S332, and T1047. Mutation of these residues
to nonphosphorylatable alanine causes increased suppression of p70S6K activity,
suggesting that phosphorylation of these residues downregulates Tscl activity
(Astrinidis et al. 2003). Interestingly, Tsc1-T310 required for Tscl binding to Plk1
(Astrinidis et al. 2006). Plk1 phosphorylates Tsc1-S467 and Tsc1-S578 leading to
Tscl ubiquitination and proteasomal degradation. Cells expressing the
phosphomimetic Tsc1-S467E/S578E show increased mTOR activity and hypersen-
sitivity to mTOR inhibition by rapamycin (Li et al. 2018b). Notably, PIk1 is an
Hsp90 client, and its stability is dependent on the co-chaperone Sgtl, whereas Plk1
expression is negatively correlated with Tscl expression (Simizu and Osada 2000;
Martins et al. 2009; Astrinidis et al. 2006). Intriguingly, co-deletion of FNIP1 and
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TSCI promotes synergistic hyperactivation of mTOR and drives polycystic kidney
disease (PKD) development (Centini et al. 2018). Together, the evidence shows
complex regulation of mTOR activity and subsequent mitosis by posttranslational
regulation of Tscl.

Another mechanism of mTOR regulation through Tscl is the result of IKK-
B-mediated phosphorylation of Tsc1-S487 and Tsc1-S511. IKKp phosphorylation of
Tscl suppresses Tscl activity, resulting in subsequent mTOR activation. Notably,
the mechanism of Tscl suppression is similar to Plk1-mediated Tscl suppression.
Mutation of Tsc1-S487 and Tsc1-S511 to phosphomimetic aspartic acid caused
increased ubiquitination and a shorter half-life of Tscl (Lee et al. 2007). Tscl-
S511 was found to be hyperphosphorylated in breast cancer tissues with high IKKf
expression and promoted inflammation-mediated tumor angiogenesis. IKKf phos-
phorylation of Tsc1-S511 also plays a role in insulin resistance (Lee et al. 2008). The
diminished activity of Tscl-pS511 results in hyperactivity of mTOR and down-
stream inhibitory phosphorylation of insulin receptor substrate 1 (IRS1) and
decreased insulin response.

Although no studies have investigated the impact of posttranslational regulation
of Tscl on its co-chaperone function, Tscl loss disrupts Hsp90 posttranslational
regulation. Mutation and loss of function of Tsc1 leads to hypoacetylation of Hsp90-
K407 and Hsp90-K419. Hypoacetylated Hsp90 has a higher ATPase activity and
decreased affinity for Hsp90 inhibitors (Woodford et al. 2019). Hsp90 acetylation
and drug binding can be restored by treating Tsc1 null cells with the HDAC inhibitor
ACY-241, demonstrating a potential therapeutic utility in cancer.

TIMP-2

The tissue inhibitor of metalloproteinase-2 (TIMP-2) is a small extracellular protein
responsible for regulating the activity of matrix metalloproteinases (MMPs)
(Bourboulia and Stetler-Stevenson 2010; Brew and Nagase 2010, Olson et al.
1997). Together with its ability to impact angiogenesis, TIMP-2 is an established
regulator of the tumor microenvironment (Kim et al. 2012; Remillard et al. 2014).

Recent work has demonstrated that TIMP-2 functions as a co-chaperone of
extracellular Hsp90 (eHsp90) (Baker-Williams et al. 2019). Mechanistically, the
NTD of TIMP-2 interacted with the MD of Hsp90, antagonizing eAhal binding to
eHsp90. The eHsp90-TIMP-2 chaperone complex was shown to mediate the inhib-
itory role of TIMP-2 toward its established extracellular target, the eHsp90 client
MMP2 (Baker-Williams et al. 2019). In agreement, the presence of TIMP-2 sensi-
tizes Hsp90 binding to its inhibitor, ganetespib (Baker-Williams et al. 2019),
underscoring the importance of understanding TIMP-2-mediated regulation of
eHsp90 chaperone function.

Previous work has also shown that extracellular phosphorylation of TIMP-2-Y90
by c-Src regulates its inhibitory activity toward MMP2 (Fig. 11.2h) (Sanchez-Pozo
et al. 2018). This finding highlights the potential effect of co-chaperone
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posttranslational modification on eHsp90 client activity; however, the impact of
TIMP-2-Y90 phosphorylation on the direct regulation of eHsp90 chaperone activity
remains unexplored.

Concluding Remarks

The Hsp90 chaperone machinery is a complex network of tightly regulated proteins
which concertedly maintain a multitude of cellular pathways. Posttranslational
modification of co-chaperones and Hsp90 itself provides regulation by controlling
chaperone complex assembly, ATPase activity, and client activation to meet cellular
requirements.

Hsp90 inhibitors have shown great promise for clinical utility. In fact, Taiho
Pharmaceutical’s Hsp90 inhibitor TAS-116 recently met its primary endpoint of
prolonged progression-free survival in the phase III clinical trial CHAPTER-GIST-
301 (Taiho 2021). However, reports of toxicity and induction of the heat shock
response, as seen with other Hsp90 inhibitors, have led to the evolution of alternative
approaches (Neckers and Workman 2012; Biamonte et al. 2010; Bagatell et al.
2000). Recent efforts toward inhibiting specific chaperone complexes have yielded
encouraging results. In attempts to overcome the reported toxicity of Hsp90 inhib-
itors, Cdc37 and Hsp90/Cdc37 complex inhibitors have been developed (Wang et al.
2019; Zhang et al. 2008). The rationale for targeting Cdc37 was reviewed in detail
and highlighted the importance of future investigation (Li et al. 2018a). Ahal-Hsp90
inhibitors have also been shown to selectively inhibit Ahal/Hsp90 complexes and
hinder client activation (Stiegler et al. 2017). Another study showed that specific
inhibition of Ahal/Hsp90 complexes was able to overcome the negative impact of
Ahal on maturation of mutant CFTR (Ihrig and Obermann 2017). Current develop-
ments toward chaperone complex inhibitors have been recently reviewed in detail
(Gestwicki and Shao 2019; Serwetnyk and Blagg 2020). It is noteworthy that direct
disruption of Hsp90 interaction with clients such as CDK4 by client-mimicking
peptides has also been shown to be a promising strategy for selective Hsp90 kinase
inhibition (Paladino et al. 2020). Treatment of clear cell renal cell carcinoma cell
lines with CDK4 mimicking peptide caused dissociation of CDK4 from Hsp90 and
apoptosis.

Several enzymes demonstrate the ability to modify a number of chaperone and
co-chaperone proteins (Fig. 11.3). Hsp90-T90 phosphorylation by protein kinase A
(PKA) has been shown to increase association with p23, PP5, and CHIP while
decreasing interaction with HOP and Cdc37 (Mollapour et al. 2011b) and while also
directly phosphorylating Cdc37 and FKBP51, suggesting bidirectional phosphory-
lation directs the formation of specific Hsp90 chaperone complexes (Wang et al.
2012). It is likely that other PTMs have a comparable effect on several
co-chaperones simultaneously.

Similarly, it is common for a single enzyme to modify several co-chaperones with
varied effects. The Hsp90 client Plk1 phosphorylates Sgtl, which had a positive
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Fig. 11.3 A wide range of enzymes modify co-chaperones. Enzymes known to modify Hsp90
co-chaperones and alter their activity are represented in circles. Enzymes that are known Hsp90
clients are colored green. Co-chaperones discussed in this review are in yellow boxes

impact on Sgtl function, whereas phosphorylation of Tscl by Plkl led to its
ubiquitination and degradation. CK2 phosphorylates several co-chaperones with
greatly differing effects. Interestingly, phosphorylation of both HOP and Sgtl by
CK2 led to their translocation to the nucleus, while CK2 phosphorylation of Cdc37,
p23, and FNIP1 enhances their binding to Hsp90 and is critical to their co-chaperone
function. Notably, the opposite effect is observed when FKBP52 is phosphorylated
by CK2. Phosphorylation is a frequent signal for co-chaperone/Hsp90 complex
formation. It follows that PP5 may serve as common regulator of co-chaperone
release from Hsp90, as PP5-mediated dephosphorylation of both Cdc37 and FNIP1
triggers their dissociation from Hsp90.

Most studies to date have focused on the impact of a singular PTM on a
co-chaperone, leaving a gap in understanding of how the modification impacts the
chaperone system as a whole. Stetz et al. thoroughly investigated a cross talk of
structurally conserved Hsp90 PTMs and propose a model in which PTMs are
allosterically coupled in an effector-sensor residue pair (Stetz et al. 2018). Further
investigation into the commonality of this phenomenon or PTM cross-talk patterns
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could yield insight into the impact of PTMs on overall changes in client chaperoning
and subsequent cellular functions. A detailed characterization of the PTM makeup of
specific Hsp90-co-chaperone-client complexes will provide the ability to identify
unique druggable targets and a fundamental understanding of the chaperone code.
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